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For a piecewise linear intermittent map, the evolution of statistical averages of a
class of observables with respect to piecewise constant initial densities is inves-
tigated and generalized eigenfunctions of the Frobenius–Perron operator P̂ are
explicitly derived. The evolution of the averages are shown to be a superposition
of the contributions from two simple eigenvalues 1 and ld ¥ (−1, 0), and a con-
tinuous spectrum on the unit interval [0, 1] of P̂. Power-law decay of correla-
tions are controlled by the continuous spectrum. Also the non-normalizable
invariant measure in the non-stationary regime is shown to determine the
strength of the power-law decay.

KEY WORDS: Generalized spectral decomposition; generalized eigenfunctions;
intermittent map; non-normalizable invariant measure.

1. INTRODUCTION

The decay of correlation is one of the important characteristic properties of
dynamical systems. For hyperbolic systems where all trajectories are expo-
nentially unstable in both directions of time, correlation functions decay
exponentially. The decay rates, known as Pollicott–Ruelle resonances, (1, 2)

are the logarithms of the zeros of the dynamical zeta function, which is
essentially the Fredholm determinant of the Frobenius–Perron operator.
Hence, the exponential decay of correlation implies that the resolvent of the
Frobenius–Perron operator is meromorphic in an annulus {z | r0 < |z| < 1}



with some 0 < r0 < 1. The Frobenius–Perron operator may have only
discrete eigenvalues there.
This is not the case for non-hyperbolic systems. An important class

of non-hyperbolic systems is that of intermittent maps, which and their
periodic extensions (3–10) have been intensively studied last decades. For
intermittent maps, the correlation decays polynomially and the power-
spectra may exhibit polynomial or logarithmic divergence at low frequen-
cies. (3–8) In their periodic extensions, (9, 10) the slow decay of correlation
causes anomalous diffusion of Lévy-flight type. According to this behavior,
as pointed out by Artuso, (8) the dynamical zeta function of an intermittent
map has a branch point at 1 and a cut along the real axis. For a piecewise
linear version of the Pomeau–Manneville map (3) introduced by Gaspard
and Wang, (6) Hasegawa and Luschei (7) studied the spectral decomposition
of the Frobenius–Perron operator. However, its spectral structure is not
fully understood. For example, the existence of a cut along the real axis
implies the existence of the real continuous spectrum, but the explicit
expressions of the corresponding generalized eigenfunctions were not
obtained.
Besides the above-mentioned aspects, there is an interesting point

concerning the role of invariant measures. Consider an intermittent map
having a parameter which controls the statistical behavior of the map. For
parameter values corresponding to the stationary stochastic process, the
map admits a normalizable invariant measure. (4, 6) And, for parameter
values corresponding to the non-stationary stochastic process, it admits
a non-normalizable invariant measure and invariant d-function measures
located at marginal fixed points. (4, 6) The normalizable invariant measure
certainly corresponds to an eigenfunction of the Frobenius–Perron opera-
tor with eigenvalue 1. However, the role of non-normalizable measure in
the spectral properties of the Frobenius–Perron operator is not studied so
far.
In this paper, as a first step towards the full spectral characterization

of the statistical behavior of intermittent maps, we study the evolution of
the statistical averages of a class of observables with respect to piecewise
constant initial densities for a piecewise linear approximation of Pomeau–
Manneville map discussed by Artuso. (8) The averages are expressed as a
superposition of an invariant, exponentially decaying and polynomially
decaying terms, which are regarded as contributions, respectively, from the
eigenvalues 1, ld (−1 < ld < 0) and the continuous spectrum on the inter-
val [0, 1] of the Frobenius–Perron operator. The corresponding general-
ized eigenfunctions are explicitly constructed as well.
When the map is in the stationary regime, the map admits an invariant

measure with non-zero density with respect to the Lebesgue measure. The
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invariant density is proportional to an invariant function f1, which exists
for all parameter values and depends smoothly on the parameter. When the
map is in non-stationary regime, the invariant function f1 defines a non-
normalizable measure. We show that this non-normalizable measure
appears as a generalized eigenfunction corresponding to the edge value 1 of
the continuous spectrum and that the normalizable invariant measure in
the stationary regime smoothly changes to a d-function measure located at
the marginal fixed point as the map changes from the stationary to the non-
stationary regimes.
The paper is organized as follows. In Section 2, we describe a model

and classes of observables and initial densities. Evolution of statistical
averages of observables is investigated in Section 3 and generalized eigen-
functions of the Frobenius–Perron operator are derived. Long time behav-
ior and the relation between normalizable and non-normalizable invariant
measures are investigated in Section 4. Conclusions are drawn in Section 5.

2. PIECEWISE LINEAR POMEAU–MANNEVILLE MAP

One of the simplest intermittent maps is that introduced by Pomeau
and Manneville (3) and its piecewise linear approximation was studied by
Gaspard and Wang. (6) Here we consider the piecewise linear version f dis-
cussed by Artuso. (8) Those maps have a marginal fixed point at the origin,
which produces intermittent chaos. The map f: [0, 1)Q [0, 1) is defined as
follows:

f(x)=˛gk(x−tk)+tk−1, (tk [ x [ tk−1)

x−a
1−a

, (a [ x [ 1)
(1)

where k=1, 2,... and the variables tk and gk are given by

tk−1−tk=
a
z(b)
11
k
2b (k=1, 2,...), t0=a (2)

gk=˛
tk−2−tk−1
tk−1−tk

=1 k
k−1
2b, (k=2, 3,...)

1−a
a−t1

=
1−a
a
z(b), (k=1)

(3)

where b > 1 is a parameter and z(s)=;.

n=1 1/n
s is the Riemann zeta

function. The map f has a marginal fixed point x=0 where the map
is approximated as f(x) 4 x+c0xb/(b−1) with a positive constant c0. When
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b > 2, the map is in the stationary regime and, when b [ 2, it is in the non-
stationary regime. Moreover, fluctuations in the stationary regime are
normal when b > 3 and of Lévy-type when 3 \ b > 2. (6)

The Frobenius–Perron operator P̂ and its adjoint P̂g are defined
respectively as

P̂r(x)=F
1

0
dy d(x−f(y)) r(y) (4)

P̂gA(x)=A(f(x)). (5)

Then, the average value of an observable A at time t with respect to an
initial density r is given by (A, P̂ tr) — (P̂gtA, r), where (A, r) is the inner
product:

(A, r)=F
1

0
dx A(x) r(x). (6)

In order to extract information about generalized eigenfunctions of the
Frobenius–Perron operator, we consider the time evolution of the average
values of certain observables with respect to a class of initial densities.
Observables A(x) are assumed to be smooth at the origin in the sense

that they behave near x=0 as a0+a1x+O(xb/(b−1)) where two constants
a0 and a1 correspond, respectively, to A(0) and AŒ(0). More precisely, A(x)
is a bounded function such that there exist constants a0 and a1, and an
inequality

|A(x)−a0−a1x| [K |x|b/(b−1) (0 [ x [ 1) (7)

holds, where K is a positive constant. Let XO be a set of such functions,
then it is a Banach space with respect to the norm:

||A||O=|a0 |+|a1 |+sup
x
|A(x)|+sup

x

|A(x)−a0−a1x|
|x|b/(b−1)

, (8)

and is invariant with respect to the adjoint of the Frobenius–Perron opera-
tor P̂g: namely, if A ¥XO, then P̂gA ¥XO. Note that since XO contains a
space C2[0, 1] of twice continuously differentiable functions and C2[0, 1]
is dense in the Hilbert space L2[0, 1] of square integrable functions, XO is
dense in L2[0, 1].
For expanding maps such as xt+1=2xt (mod 1) where all trajectories

are exponentially unstable, the spectrum of the Frobenius–Perron operator
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consists of points and may contain a certain closed disk depending on the
class of initial densities, (1, 2, 11) and when initial densities are smooth enough
such as entire functions of exponential type or polynomials, their evolution
is fully characterized by the point spectra of the Frobenius–Perron opera-
tor. (11) A similar situation is expected for non-hyperbolic maps. However,
as the general situation corresponding to the results by Pollicott (1) and
Ruelle (2) is not known, we restrict ourselves to a narrow class of piecewise
constant initial densities in order to derive explicit expressions of the
generalized eigenfunctions of the Frobenius–Perron operator. More preci-
sely, we consider a set XD of initial densities r given by

r(x)=˛ r̃k, (tk [ x [ tk−1; k=1, 2,...)

r̃0, (a [ x [ 1)
(9)

where

r̃k=C
+.

l=0

rl

k (b−1) l
with C

+.

l=0
|rl | h l <+. (10)

for some constant h > 1. Roughly speaking, rl in (10) corresponds to the
lth derivative of the density r(x) at the origin and the relation (10) implies
the smoothness of the densities at the origin. The space XD is a Banach
space with respect to the norm

||r||D=C
+.

l=0
|rl | h l, (11)

and is invariant under the action of the Frobenius–Perron operator P̂:
namely, if r ¥XD, then P̂r ¥XD. Note that, in contrast to the space XO
of observables, the space XD of densities is not dense in the Hilbert space
L2[0, 1] of square integrable functions.

3. EVOLUTION OF STATISTICAL AVERAGES OF OBSERVABLES

3.1. Matrix Elements of the Resolvent

In this section, we investigate the evolution of the average (A, P̂ tr) of
an observable A with respect to an initial density r. First, we consider the
Neumann series of the matrix element of the resolvent:

1A, 1
z1−P̂

r2=C
+.

t=0

1
z t+1
(A, P̂ tr) (12)
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where 1 is the identity operator. Each term of the series can be rewritten as

(A, P̂ tr)=(A p f t, r)=C
.

k=0
r̃kBk(t) (13)

where

Bk(t)=˛F
tk

tk−1

dx A p f t(x) (k=1, 2,...)

F
a

1
dx A p f t(x) (k=0)

(14)

From (1), one obtains the recursion relation of Bk(t). For k \ 1, it
reads as

Bk(t+1)=F
tk

tk−1

dx A p f t(gk(x−tk)+tk−1)

=
1
gk

F
tk−1

tk−2

dx A p f t(x)=
1
gk
Bk−1(t) (15)

and, hence, B̂k(z) —;.

t=0 Bk(t)/z
t+1 satisfies

B̂k(z)=
1
z
Bk(0)+

1
zgk
B̂k−1(z) (16)

Similarly, one has

B̂0(z)=
1
z
B0(0)+

1−a
z

C
+.

k=0
B̂k(z) (17)

The recursion relations (16) and (17) give

B̂0(z)=
F(z)
Z(z)

(18)

B̂k(z)=
aF(z)

(1−a) z(b) Z(z)
1
zkkb
+C

k

l=1

1
zk−l+1
1 l
k
2b Bl(0) (k \ 1) (19)
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where the functions F(z) and Z(z) are defined by:

F(z)=B0(0)+(1−a) C
.

l=1
C
.

k=0

1
zk+1
1 l
k+l
2b Bl(0) (20)

Z(z)=z−1+
a
z(b)

C
.

k=1

1−z−k

kb
(21)

Therefore, the matrix element of the resolvent of the Frobenius–
Perron operator is:

1A, 1
z1−P̂

r2=C
.

k=0
r̃kB̂k(z)

=
Y(z) F(z)
Z(z)

+
(1−a) z(b)

a
3B1(0)[Y(z)− r̃0]

+C
.

l=2
lbBl(0) z l−1 5Y(z)− r̃0−

a
(1−a) z(b)

C
l−1

k=1

1
zk
r̃k

kb
64

(22)

where the function Y(z) is

Y(z)=r̃0+
a

(1−a) z(b)
C
.

k=1

r̃k

zkkb
(23)

Infinite series in (20), (21), (22) and (23) are absolutely convergent for
|z| > 1 and, thus, are analytic there. In addition, we note that

(A, P̂ tr)=G
|z|=r

dz
2pi
z t 1A, 1

z1−P̂
r2 (24)

where the integration path is a counter-clockwise circle centered at z=0
with radius r > 1.

3.2. Analytical Properties of Individual Functions

Here we derive analytical continuations of the functions F(z), Z(z)
and Y(z) into the unit disk |z| < 1. With the aid of the formula

1
kb
=

1
C(b)

F
.

0
ds sb−1e−ks (25)
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the series expression of F can be rewritten as

F(z)=B0(0)+(1−a) C
.

l=1

lbBl(0)
zC(b)

F
.

0
ds sb−1e−ls C

.

k=0

1
zk
e−ks

=B0(0)+
1−a
C(b)

C
.

l=1
lbBl(0) F

.

0
ds
sb−1e−ls

z−e−s
(26)

The above calculations are justified because the summation converges uni-
formly in s provided |z| > 1.
We observe that, as a result of an inequality for bounded observables A:

lb |Bl(0)| [ lb(tl−1−tl) sup
x
|A(x)|=

a supx |A(x)|
z(b)

, (27)

the estimate

1−a
C(b)

C
.

l=1

: lbBl(0) F
.

0
ds
sb−1e−ls

z−e−s
: [ a(1−a) supx |A(x)|

d(z, [0, 1])
(28)

holds where d(z, [0, 1]) is the distance between z and the real interval
[0, 1]. It is obvious that each term of the right-hand side of (26) is analytic
except the cut on the real interval [0, 1]. Therefore, the right-hand side of
(26) defines a function which is analytic except the cut on the real interval
[0, 1] and, then, is an analytical continuation of F from the outside of the
unit disk to the whole complex plane.
Similarly, the following analytical continuations are obtained:

Y(z)=r̃0+
a

(1−a) z(b) C[(b−1) l+b]
C
.

l=0
rl F

.

0
du
u (b−1)(l+1)e−u

z−e−u
(29)

Z(z)=(z−1)51+ a
z(b) C(b)

F
.

0
ds

sb−1

(e s−1)(z−e−s)
6 (30)

both of which are analytic in the unit disk |z| < 1 except the cut on the real
interval [0, 1]. In addition, the last term of (22) has the following analyti-
cal continuation:

X(z) — B1(0) Y(z)+C
.

l=2
lbBl(0) z l−1 5Y(z)− r̃0−

a
(1−a) z(b)

C
l−1

k=1

1
zk
r̃k

kb
6

QY(z) C
.

l=1
lbBl(0) z l−1− C

.

l=2
lbBl(0) z l−1 5r̃0+

a
(1−a) z(b)

C
l−1

k=1

1
zk
r̃k

kb
6

(31)
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The series of the right-hand side are absolutely convergent for |z| < 1 and,
thus, analytic there. Note that (31) is not a simple rewrite as the left-hand
side does not converge for |z| < 1.
Next we consider the zeros of Z(z) in the complement of the real

interval [0, 1]. Let W(z) — Z(z)/(z−1), then for Im z ] 0

Im W(z)=
−a Im z
z(b) C(b)

F
.

0
ds

sb−1

(e s−1) |z−e−s|2
] 0 (32)

Also, when Im z=0 and Re z > 1, we have z−e−s > 0 and, thus,

W(z)=1+
a

z(b) C(b)
F
.

0
ds

sb−1

(e s−1)(z−e−s)
\ 1 > 0 (33)

On the other hand, for Im z=0 and Re z < 0, we have

WŒ(z)=
−a

z(b) C(b)
F
.

0
ds

sb−1

(e s−1)(z−e−s)2
< 0 (34)

W(−1)=1−a+
a
2b
> 0 (35)

and

z(b) C(b)
a

(W(z)−1)=−F
.

0
ds

sb−1

(e s−1)(|z|+e−s)

[ −F
.

1
ds

sb−1

(e s−1)(|z|+e−s)
[ −F

.

1
ds

e−s

|z|+e−s

=−log{(e|z|)−1+1}Q −. (zQ 0) (36)

Therefore, W(z) has a unique zero on the real interval (−1, 0), which we
denote z=ld.

3.3. Decomposition of Average Values of Observables

Now we go back to the contour integral (24). Because of the previous
arguments, its integrand (i.e., z t times the right-hand side of (22)) is analytic
in |z| < 1 except a simple pole at z=ld and a cut on the real interval [0, 1].
The residue of the integrand at z=ld is

lim
zQ ld

(z−ld) z t 1A,
1

z1−P̂
r2=l td

Y(ld) F(ld)
(ld−1) WŒ(ld)

(37)
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Hence, the integration contour can be deformed from {z | |z|=r(r > 1)} to

C — {z | |z|=g, |z−1|=g or z=l±i0 (g < l < 1−g)}

where 0 < g° 1 and the direction of C is counter-clockwise. Then, because
constants do not contribute to (24), one has

(A, P̂ tr)=l td
Y(ld) F(ld)
(ld−1) WŒ(ld)

+F
C

dz
2pi
z t 3Y(z) F(z)

Z(z)
+
(1−a) z(b)

a
X(z)4 (38)

Now we consider term by term. When A belongs to the functional
space XO and r to the space XD, one has

lim
zQ 0
zz t
Y(z) F(z)
Z(z)

=0 (39)

and the function zaX(z) (with h−1/(b−1) < a < 1) is finite in the limit of
zQ 0. Hence,

lim
gQ 0

F
|z|=g

dz
2pi
z t 3Y(z) F(z)

Z(z)
+
(1−a) z(b)

a
X(z)4=0 (40)

Similarly, under the same conditions, one has

lim
gQ 0

F
|z−1|=g

dz
2pi
z t
Y(z) F(z)
Z(z)

=lim
zQ 1
(z−1)

Y(z) F(z)
Z(z)

(41)

lim
gQ 0

F
|z−1|=g

dz
2pi
z t
(1−a) z(b)

a
X(z)=0 (42)

To evaluate the limit in the right-hand side of (41), it is convenient to
decompose

(z−1)
F(z)
Z(z)
=(1−a) A(0)+(z−1)

Fr(z)
Z(z)

(43)
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where Fr(z) is

Fr(z)=F
1

a
dx{A(x)−A(0)}

+
1−a
C(b)

C
.

l=1
lb F

tl−1

tl

dx{A(x)−A(0)} F
.

0
ds
sb−1e−ls

z−e−s
(44)

Then, because Y(z) is finite in the limit of zQ 1 and

lim
zQ 1
(z−1)

Fr(z)
Z(z)

=˛0 (b [ 2)

Fr(1)
W(1)

(b > 2)
(45)

one has

lim
zQ 1
(z−1)

Y(z) F(z)
Z(z)

=˛Y(1)(1−a) A(0) (b [ 2)

Y(1)(1−a) A(0)+
Y(1) Fr(1)
W(1)

(b > 2)
(46)

Note that, when b [ 2, both Z(z) and Fr(z) diverge as zQ 1, but the
divergence of the former is stronger than that of the latter and the ratio
Fr(z)/Z(z) vanishes for zQ 1.
Since X(z)=Y(z);.

l=1 l
bBl(0) z l−1+(analytic term) for |z| < 1 (cf.

(31)), the integral along the cut is evaluated as

lim
gQ 0

F
C0{|z|=g 2 |z−1|=g}

dz
2pi
z t 3Y(z) F(z)

Z(z)
+
(1−a) z(b)

a
Y(z) C

.

l=1
lbBl(0) z l−14

=F
1

0

dl
2pi
l t 5−3Y(l+i0) F(l+i0)

Z(l+i0)
+
(1−a) z(b)

a
Y(l+i0) C

.

l=1
lbBl(0) l l−14

+3Y(l−i0) F(l−i0)
Z(l−i0)

+
(1−a) z(b)

a
Y(l−i0) C

.

l=1
lbBl(0) l l−146

=
a

z(b) C(b)
F
1

0
dl
Im{Y(l−i0) Z(l+i0)}

Im Z(l+i0)

×
l t (log 1

l
)b−1

|Z(l+i0)|2
Im{F(l−i0) Z(l+i0)}

Im Z(l+i0)
(47)
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where we have used

−
ImF(l±i0)
Im Z(l±i0)

=
(1−a) z(b)

a
C
.

l=1
lbBl(0) l l−1,

Im Z(l+i0)=
pa

z(b) C(b)
1 log 1

l
2b−1.

With the aid of the following relation obtained from (43):

Im{F(l−i0) Z(l+i0)}=Im{Fr(l−i0) Z(l+i0)}, (48)

Eqs. (38), (40), (42), (46) and (47) cast into

(A, P̂ tr)=(A, Fin)(F̃in, r)+l
t
d(A, Fd)(F̃d, r)+F

1

0
dl l t(A, Fl)(F̃l, r)

(49)

The linear functionals Fin, Fd and Fl acting on the functions A are defined
by

(A, Fin)=˛
1
Ŵ(1)

F
1

0
dx A(x) f1(x) (b > 2)

A(0) (b [ 2)
(50)

(A, Fd)=
1

(ld−1) ŴŒ(ld)
F
1

0
dx A(x) fld (x) (51)

(A, Fl)=N(l) F
1

0
dx{A(x)−A(0)}

×5fl(x)+
z(b)
a
(l−1) Ŵ(l) C

.

l=1
lbql(x) l l−16 (52)

In the above, the functions ql(x), fl(x), Ŵ(l) and N(l) are defined,
respectively, as

ql(x)=˛
1 (tl [ x < tl−1)

0 (otherwise)
(53)

fl(x)=
q0(x)
1−a

+
1
C(b)

C
.

l=1
lbql(x) F

.

0
ds P

sb−1e−ls

l−e−s
(54)
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Ŵ(l)=1+
a

C(b) z(b)
F
.

0
ds P

sb−1

(e s−1)(l−e−s)
(55)

N(l)=
a

C(b) z(b) (log
1
l
)b−1

(l−1)2 Ŵ(l)2+( ap
C(b) z(b))

2 (log 1
l
)2b−2

(56)

where the convention t−1=1 is used and P stands for Cauchy’s principal
value.
On the other hand, the linear functionals F̃in, F̃d and F̃l acting on the

initial densities r are given by

(F̃in, r)=(1−a) r̃0+C
.

l=0
rlnl(1) (57)

(F̃d, r)=(1−a) r̃0+C
.

l=0
rlnl(ld) (58)

(F̃l, r)=(1−a) r̃0+C
.

l=0
rl 3nl(l)+

(l−1) Ŵ(l) C(b)(log 1
l
) (b−1) l

C[(b−1) l+b]
4 (59)

where the coefficients nl(l) are defined as

nl(l)=
a

z(b) C[(b−1) l+b]
F
.

0
ds P

s (b−1)(l+1)e−s

l−e−s
(60)

3.4. Generalized Eigenfunctions of the Frobenius–Perron Operator

We remark that, for any bounded linear functional F over XO,
(P̂gA, F) (A ¥XO) is well defined due to the invariance of XO under P̂g

and that the operator P̂ can be extended via (A, P̂F) — (P̂gA, F) to the
space of all bounded linear functionals over XO (the dual space of XO). As
seen by a straightforward calculation, the linear functionals Fin, Fd and Fl
(0 < l < 1) are bounded and satisfy

(A, P̂Fin) — (P̂gA, Fin)=(A, Fin), (61)

(A, P̂Fd) — (P̂gA, Fd)=ld(A, Fd), (62)

(A, P̂Fl) — (P̂gA, Fl)=l(A, Fl), (63)

for any A ¥XO. Namely, they are eigenfunctions of P̂ in the generalized
sense. (12)

Similarly, the operator P̂g can be extended to the dual space of XD
and the functionals F̃in, F̃d, F̃l are its generalized eigenfunctions:
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(P̂gF̃in, r)=(F̃in, P̂r)=(F̃in, r), (64)

(P̂gF̃d, r)=(F̃d, P̂r)=ld(F̃d, r), (65)

(P̂gF̃l, r)=(F̃l, P̂r)=l(F̃l, r). (66)

Note that eigenfunctions of P̂ and P̂g are referred to, respectively, as right
and left eigenfunctions of P̂.
It is then interesting to reinterpret (49) from this point of view. One

has

(A, r)=(A, Fin)(F̃in, r)+(A, Fd)(F̃d, r)+F
1

0
dl(A, Fl)(F̃l, r) (67)

(A, P̂r)=(A, Fin)(F̃in, r)+ld(A, Fd)(F̃d, r)+F
1

0
dl l(A, Fl)(F̃l, r). (68)

The first relation (67) corresponds to the completeness of the set of left
eigenfunctions {Fin, Fd, Fl} and that of right ones {F̃in, F̃d, F̃l}. The second
relation (68) can be considered as a spectral decomposition of P̂ in terms of
those eigenfunctions, which correspond to two isolated eigenvalues (1 and ld)
and a continuous spectrum on [0, 1]. These relations are regarded as an
extension to the Frobenius–Perron operator of the generalized spectral
decomposition in the sense of ref. 12, which was originally formulated for
self-adjoint and unitary operators. Such extended spectral decompositions
are widely used to study statistical properties of dynamical systems. (11, 13)

4. LONG TIME BEHAVIOR

When l 4 1, (F̃l, r) 4 (F̃1, r)=(F̃in, r) and the leading term of (A, Fl) is

(A, Fl) 4 ˛
K1(1−l)b−3 F

1

0
dx{A(x)−A(0)} f1(x) (b > 2)

K2
(1−l)[log(1−l)]2

F
1

0
dx{A(x)−A(0)} f1(x) (b=2)

K3(1−l)1−b F
1

0
dx{A(x)−A(0)} f1(x) (2 > b > 3/2)

K4
`1−l

log
1
1−l

AŒ(0) (b=3/2)

K5(1−l)b−2 AŒ(0) (b < 3/2)
(69)
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where Kj (j=1,..., 5) are positive constants. Those properties lead to the
following behavior for tQ+.:

(i) Stationary regime (b > 2)

(A, P̂ tr) 4 (F̃in,r)3
1
Ŵ(1)

F
1

0
dxA(x) f1(x)+

K −1
tb−2

F
1

0
dx{A(x)−A(0)} f1(x)4

(70)

where Ŵ(1)=>10 dx f1(x) is the normalization constant and K −1 is a positive
constant.

(ii) Non-stationary regular regime (2 \ b > 3/2)

(A, P̂ tr) 4 (F̃in, r)3A(0)+
K −2
log t

F
1

0
dx{A(x)−A(0)} f1(x)4 , (b=2) (71)

(A, P̂ tr) 4 (F̃in, r)3A(0)+
K −3
t2−b

F
1

0
dx{A(x)−A(0)} f1(x)4 , (2 > b > 3/2)

(72)

where K −2 and K
−

3 are positive constants.

(iii) Non-stationary singular regime (3/2 \ b)

(A, P̂ tr) 4 (F̃in, r)3A(0)+
K −4 log t

`t
AŒ(0)4 , (b=3/2) (73)

(A, P̂ tr) 4 (F̃in, r)3A(0)+
K −5
tb−1
AŒ(0)4 , (3/2 > b) (74)

where K −4 and K
−

5 are positive constants.

First we observe that the long-time behaviors in the stationary regime
give the power-spectra discussed in ref. 5. At first sight, the behaviors in the
non-stationary regime seem to be different from those of ref. 5. This is due
to our choice (9) and (10) of initial densities. Indeed, if the function Y(z)
related to the initial densities has the same singularities near z=1 as F(z),
the power-spectra of ref. 5 are reproduced. But our choice leads to Y(z)
which is regular at z=1.
Now we turn to the invariant function f1(x) defined by (54). For each

value of x ¥ (0, 1], the sum in (54) is finite and, thus, it is well-defined for
any b > 1. As easily seen, it diverges at the origin as f1(x)3 x−1/(b−1).
When Ŵ(1)=>10 f1(x) dx is finite, f1(x)/Ŵ(1) defines an invariant measure.
This is the case for b > 2.
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Provided that A(x) is differentiable at x=0 and A(x)−{A(0)+
AŒ(0) x}=O(xb/(b−1)) near x=0, the integral

F
1

0
{A(x)−A(0)} f1(x) dx (75)

is finite for b > 3/2. Then, since Ŵ(1)Q+. (bQ 2), we have

1
Ŵ(1)

F
1

0
A(x) f1(x) dx

=A(0)+
1
Ŵ(1)

F
1

0
{A(x)−A(0)} f1(x) dxQ A(0) (bQ 2) (76)

or the invariant measure f1(x)/Ŵ(1) weakly converges to d(x) as bQ 2.
This explains the transition from the stationary regime (70) to the non-
stationary regime (71).
It is interesting that even in the non-stationary regime, the invariant

function f1 appears in the generalized eigenfunctions corresponding to the
continuous spectrum (cf. (71) and (72)). In this way, non-normalizable
measure in the non-stationary regime plays a role of a generalized eigen-
function. Moreover, because of the singularity of f1(x) at the origin, the
integral (75) does not exist for b [ 3/2 and, as a result, the coefficient of
1/t2−b in (72) cannot keep the same form there. This explains the second
transition from (72) to (73).

5. CONCLUSIONS

We have studied, for a piecewise linear approximation of Pomeau–
Manneville map, the evolution of statistical averages of bounded observ-
ables which are differentiable at the origin with respect to piecewise con-
stant initial densities which are smooth at the origin. The averages are
shown to be a superposition of the contributions from two simple eigen-
values (1 and ld ¥ (−1, 0)) and a continuous spectrum on [0, 1] of the
Frobenius–Perron operator. The corresponding generalized eigenfunctions
are explicitly constructed. The power-law decay of correlations is con-
trolled by the continuous spectrum, particularly by its values near 1. The
appearance of the continuous spectrum starting from 1 is the main differ-
ence from the hyperbolic systems, where correlation decays exponentially
and decay rates are characterized as isolated eigenvalues of the Frobenius–
Perron operator in a generalized sense. (1, 2, 11) Note that the space XD of
initial densities is not dense in L2[0, 1] and we will discuss elsewhere a
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more satisfactory description in terms of initial densities which form a
dense subset of L2[0, 1].
When the map is in the stationary regime, the map admits an invariant

measure with non-zero density with respect to the Lebesgue measure. The
invariant density is proportional to an invariant function f1, which is
meaningful for any b and depends smoothly on b. When the map is in
non-stationary regime (b [ 2), the invariant function f1(x) defines a non-
normalizable measure. We show that this non-normalizable measure
determines the generalized eigenfunction corresponding to the continuous
spectrum at the spectral value 1; Fl |l=1. Moreover, as the map approaches
non-stationary regime (i.e., bQ 2), the normalizable invariant measure
f1(x)/Ŵ(1) in the stationary regime is shown to converge weakly to a
d-function measure located at the marginal fixed point x=0.
As shown in ref. 5, the power-spectrum changes its character in the

non-stationary regime when the map f behaves as f(x) 4 x+c0x3 near the
marginal fixed point x=0. The corresponding change of the power-law
decay is observed in the present model with the threshold b=3/2.
Although we did not discuss in detail, the power-law decay above the
threshold b > 3/2 is controlled by the cut of the denominator function
Z(z), which is essentially the dynamical zeta function. On the other hand,
below the threshold b [ 3/2, the power-law decay is controlled by the cut
of the numerator function F(z). Thus the latter contribution cannot be
obtained from the zeta function. Similar aspects in the power-spectrum was
discussed by Hasegawa and Luschei. (7)

The real eigenvalue at ld ¥ (−1, 0) corresponds to oscillatory expo-
nential decay. Although it is not important in the long-time behavior, this
was not known before.
Those considerations can be straightforwardly extended to the maps

with anomalous diffusion such as the ones introduced by Geisel et al., (9)

which provide a spectral characterization of the anomalous diffusion. In
order to study a nonlinear multibaker map of Gilbert, Ferguson, and
Dorfman, (14) such an extension is necessary and it will be discussed else-
where.
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